Single-Molecule Magnets: Ligand-Induced Core Distortion and Multiple Jahn-Teller Isomerism in $[Mn_{12}O_{12}(O_2CMe)_8(O_2PPh_2)_8(H_2O)_4]$

Colette Boskovic,† Maren Pink,† John C. Huffman,† David N. Hendrickson,*,‡ and George Christou*,†,§

> Department of Chemistry and the Molecular Structure Center, Indiana University Bloomington, Indiana 47405-7102 Department of Chemistry-0358 University of California at San Diego La Jolla, California 92093-0358

> > Received June 4, 2001

Single-molecule magnets (SMMs) are a relatively recent discovery that promises access to the ultimate high-density memory storage device in which each bit of digital information is stored on a single molecule. Each independent molecule of a SMM possesses the ability to function as a magnetizable magnet below a critical temperature. This is due to intrinsic intramolecular properties, that is, a large spin ground state and a large and negative (easy-axis-type) magnetoanisotropy, rather than to intermolecular interactions and long-range ordering. The most well studied SMMs are the $[Mn_{12}O_{12}(O_2CR)_{16}(H_2O)_x]^{n-}$ (n = 0-2; $8Mn^{III}4Mn^{IV}$ for n = 0) complexes.²⁻⁴ Evidence for the SMM behavior comes from frequency-dependent out-of-phase AC susceptibility signals $(\chi_{M}^{"})$ and magnetization hysteresis loops. In addition, oriented crystals display steps in the hysteresis loops indicative of field-tuned quantum tunneling of the magnetization (QTM).5 A substantial amount of effort has been dedicated to systematic variation of the carboxylate R group and solvate molecules of crystallization, which has recently led to the discovery of Jahn-Teller (JT) isomerism,6 involving differing relative orientations of the JT elongation axes of the eight Mn^{III} centers and resulting in significantly different magnetic behavior for the different JT isomers. This includes differing positions of the χ_{M} " peaks and differing magnetization hysteresis plots, both reflecting different rates of magnetization relaxation.

We report herein a major expansion of the Mn₁₂ SMM family by demonstrating for the first time that carboxylate ligands can be replaced by other organic ligands, in this case diphenylphosphinate groups to give $[Mn_{12}O_{12}(O_2CMe)_8(O_2PPh_2)_8(H_2O)_4]$. In addition, this species is unique in displaying three distinct JT isomers, two of which cocrystallize in the same crystal.

The reaction of $[Mn_{12}O_{12}(O_2CMe)_{16}(H_2O)_4] \cdot 2MeCO_2H \cdot 4H_2O$ (1) with 8 equiv of Ph₂PO₂H in MeCN leads to crystallization of

[‡] University of California at San Diego.

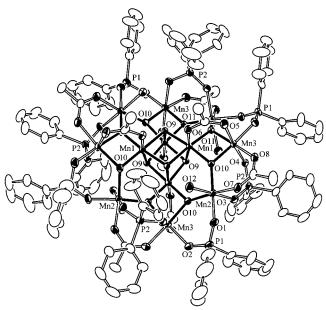


Figure 1. ORTEP representation of complex 2·12CH₂Cl₂ at the 50% probability level.

 $[Mn_{12}O_{12}(O_2CMe)_8(O_2PPh_2)_8(H_2O)_4]$ (2) in 60% yield, which was crystallographically characterized as 2.14/3MeCN.4/3H2O.7 Recrystallization from CH₂Cl₂/hexanes gives 2·12CH₂Cl₂.8 2.14/3MeCN.4/3H2O crystallizes in space group C2/c with two independent molecules, the asymmetric unit containing 1.5 Mn₁₂ clusters in addition to solvent. 2·12CH₂Cl₂ crystallizes in space group $P4_2/n$, with the asymmetric unit containing 0.25 Mn₁₂ clusters and solvent. All three crystallographically unique molecules possess a structure similar to that of 1, with a central [Mn^{IV}₄O₄] cubane held within a nonplanar ring of eight Mn^{III} ions by eight μ_3 -O²⁻ ions. However, in 2 the acetate groups at the four axial MnIII-MnIII and four of the eight equatorial MnIII-Mn^{III} carboxylate sites have been replaced by diphenylphosphinate groups, while the remaining equatorial sites and the four axial Mn^{IV}-Mn^{III} sites remain occupied by acetates (Figure 1), resulting in a significant distortion of the $[Mn_{12}O_{12}]^{16+}$ core (Figure 2). This is reflected in the bond angles and an increase of $\sim 0.1 \text{ Å}$ in all of the Mn^{III}-Mn^{III} distances in 2, and is most apparent as a "bowing" in each of the linear Mn₄ units, with the angles of the type Mn(3)-Mn(1)-Mn(1') in 2·12CH₂Cl₂ decreasing from \sim 178° in 1 to 171–173° in 2. All three of the molecules possess one H₂O ligand bound to every other Mn^{III} center (Mn(2) for 2.12CH₂Cl₂), oriented alternately in opposite directions, as is observed in 1. The main difference between the three different molecules of 2 lies in the location of the JT elongation axes of the eight Mn^{III} centers (Figure 2). The single cluster in 2·12CH₂-Cl₂ possesses S₄ symmetry with all eight JT axes oriented approximately parallel in the axial direction, and thus they are not pointing toward the oxide ligands. This is the same as in 1 and is the normal situation in Mn₁₂-carboxylate species. However, the two independent molecules in $2^{\cdot 14}/_3$ MeCN $^{\cdot 4}/_3$ H₂O possess C_1 and approximate S_4 (crystallographic C_2) symmetry, with two

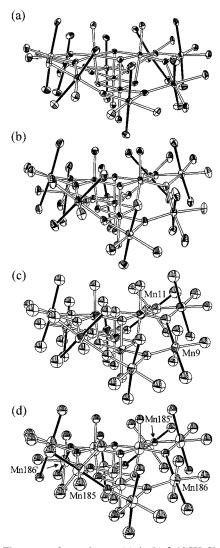
Indiana University.

[§] Present address: Department of Chemistry, University of Florida, Gainesville, FL 32611-7200.

⁽¹⁾ Christou, G.; Gatteschi, D.; Hendrickson, D. N.; Sessoli, R. MRS Bulletin **2000**, 25, 66.

^{(2) (}a) Sessoli, R.; Tsai, H.-L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N. *J. Am. Chem. Soc.* **1993**, *115*, 1804. (b) Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M.

<sup>Soc. 1993, 115, 1804. (b) Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature 1993, 365, 141.
(3) (a) Eppley, H. J.; Tsai, H.-L.; de Vries, N.; Folting, K.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1995, 117, 301. (b) Aubin, S. M. J.; Sun, Z.; Pardi, L.; Krzystek, J.; Folting, K.; Brunel, L.-C.; Rheingold, A. L.; Christou, G.; Hendrickson, D. N. Inorg. Chem. 1999, 38, 5329.
(4) Soler, M.; Chandra, S. K.; Ruiz, D.; Davidson, E. R.; Hendrickson, D.</sup>


N.; Christou, G. Chem. Commun. 2000, 2417.
(5) (a) Friedman, J. R.; Sarachik, M. P.; Tejada, J.; Maciejewski, J.; Ziolo,

R. J. Appl. Phys. **1996**, 79, 6031. (b) Thomas, L.; Lionti, F.; Ballou, R.; Gatteschi, D.; Sessoli, R.; Barbara, B. Nature **1996**, 383, 145.

^{(6) (}a) Sun, Z.; Ruiz, D.; Dilley, N. R.; Soler, M.; Ribas, J.; Folting, K.; Maple, M. B.; Christou, G.; Hendrickson, D. N. Chem. Commun. 1999, 1973. (b) Aubin, S. M. J.; Sun, Z.; Eppley, H. J.; Rumberger, E. M.; Guzei, I. A.; Folting, K.; Gantzel, P. K.; Rheingold, A. L.; Christou, G.; Hendrickson, D. N. Inorg. Chem. 2001, 40, 2127.

⁽⁷⁾ Crystal data for $^{3}/_{2}[\mathbf{2}]$ ·7MeCN·2H₂O: $C_{182}H_{193}N_{7}Mn_{18}O_{74}P_{12}$, 5023.11 g mol⁻¹, monoclinic, C2/c, a=55.071(4) Å, b=33.491(3) Å, c=27.331-(2) Å, $\beta = 114.966(2)^\circ$, Z = 8, V = 45699.0 Å³, $d_{\rm calc} = 1.460$ g cm⁻³, T = -158 °C. The structure was solved by direct methods (SHELXTL) and refined (on F) using 52 187 reflections with $F > 3\sigma(F)$ to $R(R_w)$ values of 0.0777 (0.0645).

⁽⁸⁾ Crystal data for **2**·12CH₂Cl₂: $C_{324}H_{136}Cl_{24}Mn_{12}O_{48}P_8$, 4152.17 g mol⁻ tetragonal, $P4\sqrt{n}$, a=b=25.208(2) Å, c=13.413(1) Å, Z=2, V=8523.1 Å³, $d_{\rm calc}=1.618$ gcm⁻³, T=-160 °C. The structure was solved by direct methods (SHELXTL) and refined (on F) using 9776 reflections with F > 0 $2\sigma(F)$ to $R(R_{\rm w})$ values of 0.0666 (0.2180).

Figure 2. The cores of complexes: (a) **1**, (b) **2**·12CH₂Cl₂, (c) the C_1 molecule of **2**·14/3MeCN·⁴/₃H₂O, and (d) the C_2 molecule of **2**·1⁴/₃MeCN·⁴/₃H₂O, emphasizing the Jahn—Teller axes as solid black bonds.

(Mn(9) and Mn(11)) and four (Mn(185), Mn(185'), Mn(186), and Mn(186')) equatorially oriented JT axes, respectively. That is, for these species, some of the JT axes point toward oxide ligands. In both cases, these "abnormally" oriented JT axes are located at the Mn^{III} centers with H_2O ligands, as has been observed for the previously reported examples of JT isomerism.⁶

The ground state of $2 \cdot 12 \text{CH}_2 \text{Cl}_2$ was determined from reduced magnetization (M/N μ_B) versus H/T measurements in the 1.8–25 K and 20–70 kG range. Fitting of the data gave S = 10, g = 1.92 and D = -0.41 cm⁻¹ (-0.59 K), values typical for [Mn₁₂O₁₂(O₂CR)₁₆(H₂O)_x] clusters (S = 10, D = -0.4 to -0.5 cm⁻¹).

AC magnetization measurements were performed on $2 \cdot 12 \text{CH}_2 \text{Cl}_2$ in the 1.8 - 10 K range in a 3.5 G AC field oscillating at 1 - 1500 Hz. The in-phase $\chi_\text{M}{}'T$ signal shows a frequency-dependent decrease at $T \le 8 \text{ K}$, indicative of the onset of slow relaxation. This was confirmed by the concomitant appearance

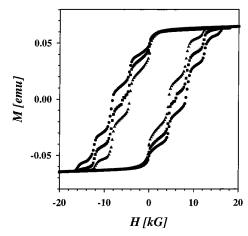


Figure 3. Magnetization hysteresis loops for oriented crystals measured in an eicosane matrix for complex $2 \cdot 12 \text{CH}_2 \text{Cl}_2$ at $1.8 \ (\bullet), 1.9 \ (\blacksquare),$ and $2.0 \ \text{K} \ (\blacktriangle).$

of an out-of-phase ($\chi_{\rm M}''$) signal due to the inability of $2\cdot 12{\rm CH_2-Cl_2}$ to relax sufficiently rapidly at these temperatures to keep up with the oscillating field. For the AC frequency range 1-1500 Hz, the $\chi_{\rm M}''$ peaks of $2\cdot 12{\rm CH_2Cl_2}$ occur in the range 3-7 K, again consistent with the behavior generally observed for [Mn₁₂O₁₂-(O₂CR)₁₆(H₂O)_x]. The $\chi_{\rm M}''$ data obtained by varying the oscillation frequency of the AC field can be fit to an Arrhenius equation to give the effective energy barrier for the magnetization relaxation ($U_{\rm eff}$), and such an analysis indicates that $U_{\rm eff}$ for complex $2\cdot 12{\rm CH_2Cl_2}$ is $\sim 42~{\rm cm^{-1}}$ (60 K), which again is within the normal range for [Mn₁₂O₁₂(O₂CR)₁₆(H₂O)_x] of $42-50~{\rm cm^{-1}}$ (60–72 K). AC measurements on $2\cdot ^{14}$ /₃MeCN· 4 /₃H₂O are in progress, but are hindered by crystal degradation following rapid solvent loss.

Magnetization hysteresis loops were observed for oriented crystals of $2 \cdot 12 \text{CH}_2 \text{Cl}_2$ at 1.8, 1.9, and 2.0 K (Figure 3). A few crystals were suspended in eicosane at 40 °C, subjected to a 70 kG field to align their principal axis of magnetization parallel to the applied field, and then cooled to low temperature. A number of steps due to quantum tunneling of the magnetization are evident in the hysteresis loop. The separation between steps was found to be 3.95 kG, indicating a value of D/g of $\sim -0.18 \text{ cm}^{-1}$, which is consistent with the value of -0.21 cm^{-1} obtained from the fitting of the reduced magnetization data.

In conclusion, the first significantly altered derivative of $[Mn_{12}O_{12}(O_2CR)_{16}(H_2O)_x]$ has been prepared by incorporation of non-carboxylate organic ligands, and ligand-induced core distortions result. In addition, multiple JT isomerism has been observed, emphasizing the small energy differences involved. Complex 2 is magnetochemically similar to its 16-carboxylate parent, possessing an S=10 ground state and displaying frequency-dependent peaks in the out-of-phase AC susceptibility plots, in addition to magnetization hysteresis. Furthermore, quantum tunneling of the magnetization is evident as steps in the hysteresis loops. Therefore, the SMM properties are still retained in the diphenylphosphinate-substituted species 2, which thus represents the prototype of a major new thrust in the SMM field.

 $\begin{tabular}{lll} \bf Acknowledgment. & This work was supported by National Science \\ Foundation grants to G.C. and D.N.H. \\ \end{tabular}$

Supporting Information Available: Crystallographic details (CIF) for 2·12CH₂Cl₂ and 2·14/₃MeCN·4/₃H₂O; reduced magnetization versus field plots and fit; Arrhenius plot. This material is available free of charge via the Internet at http://pubs.acs.org.

JA016341+

⁽⁹⁾ See Supporting Information.

⁽¹⁰⁾ Vincent, J. B.; Christmas, C.; Chang, H.-R.; Li, Q.; Boyd, P. D. W.; Huffman, J. C.; Hendrickson, D. N.; Christou, G. J. Am. Chem. Soc. 1989, 111, 2086